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Cyclopropanation versus carbon–hydrogen insertion. The
influences of substrate and catalyst on selectivity
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Abstract—Reactions of diazoacetates with varying linkages from the diazo-carbon to a vinyl group, catalyzed by chiral copper(I)
and rhodium(II) compounds, were examined for selectivity in their intramolecular reactions. Bis-oxazoline-ligated copper(I) has
advantages for cyclopropanation that form medium-to-large rings. Dirhodium(II) carboxamidates have advantages for small-ring-
fused cyclopropane compounds and for carbon–hydrogen insertion. © 2001 Elsevier Science Ltd. All rights reserved.

Methods to achieve high selectivity in catalytic metal
carbene transformations are being developed, and
their underlying principles are being revealed.1–5 Only
a few years ago there was a paucity of examples for
effective catalytic intramolecular cyclopropanation
that could provide ring sizes beyond six.6,7 Competi-
tion with intramolecular C�H insertion limited appli-
cations to either cyclopropanation or insertion that
were synthetically useful.8,9 Furthermore, the overlay
of stereoselectivity on this competition in chemoselec-

tion has presented a challenge of considerable magni-
tude. We wish to report results that identify those
factors responsible for these forms of selectivity and
the catalysts that are most effective for each transfor-
mation.

Diazoacetates 1–7 were subjected to diazo decomposi-
tion with catalysts 8–13 for the purpose of examining
trends in enantioselectivity and to determine the
extent of competition between cyclopropanation and
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C�H insertion. With 1 and 2 the only product formed
in characterizable amounts with the use of any of the
catalysts was intramolecular cyclopropanation (Eq.
(1)).10,11 Beginning with 3 and extending through 5,
insertion became competitive with cyclopropanation
(Eq. (2)), and this competition also occurred with 6 and
7 (Eq. (3)). Product yields were in the range 50–95%
with all diazo compounds and catalysts, except 3 and 4;
with these latter diazoacetate esters, dimer formation
and O�H insertion were in competition, sometimes
resulting in yields for cyclopropanation plus C�H inser-
tion products that were less than 50%. Lower yields in
these cases are understandable in light of the presumed
higher energy for cyclopropanation.

Table 1 reports % ee values for cyclopropane products
as a function of catalyst and ring size. For 18 and 23
diastereomeric cis and trans cyclopropane products
were formed, and their % ee values are given. Note that
% ee values decrease with increasing ring size for
dirhodium(II) carboxamidate catalysts 8–11 but
increase with increasing ring size for the chiral bis-oxa-
zoline ligated copper(I) catalyst 13; a plot of % ee
versus ring size for catalysts 8 and 13 (Fig. 1) shows
this effect clearly, and a mechanistic rationale for this
divergence has been presented.12,13 The results obtained
with Rh2(TBPRO)4 show that, as previously reported
by Davies,14 this catalyst does not exhibit high selectiv-
ity with diazoacetates.

(1)

(2)

(3)

Table 1. Enantioselectivities as a function of catalyst and ring sizea

Catalyst % eeb,c

18Z(12)23E(11)1223Z(11)1222(8)1217(8)16(7)15(6)14(5)10 18E(12)

66528295Rh2(5S-MEPY)4 (8) n.a. 65 46 4253
94 83 47 52Rh2(4S-MEOX)4 (9) n.a. 48 67 37 30

2376 26 40 n.d. n.d.Rh2(4S-MPPIM)4 (10) n.d.8713 24
71Rh2(4S-IBAZ)4 (11) 7280 47 44 49 56 64 70
44 8 24 28Rh2(5S-TBPRO)4 (12) 11n.d. 12 4

765242 8381857920 71Cu(box)PF6 (13)

a Reactions performed in refluxing dichloromethane with 1.0 mol% of catalyst with 1.0 mmol of diazo ester.
b The ring size is given in parenthesis. Enantiomeric excesses were obtained by GC on chiral Chiraldex columns.
c n.a., not available; n.d., not determined.



M. P. Doyle, I. M. Phillips / Tetrahedron Letters 42 (2001) 3155–3158 3157

Table 2. Chemoselectivity and diastereoselectivity in catalytic reactions of 3–7a

DiastereoselectivityChemoselectivityCatalyst

16:19 17:20 22:2412 23:2512 18:21 23 (Z :E)12 18 (Z :E)

84:16 82:18 96:4Rh2(OAc)4 68:32\99:B1 87:13 69:31
14:86 B1:\99Rh2(5S-MEPY)4 (8) 5:9542:58 4:96 88:12 75:25
9:91 B1:\99 1:9919:81 1:99Rh2(4S-MEOX)4 (9) 88:12 76:24

47:53Rh2(4S-MPPIM)4 (10) 13:87 n.d. n.d. 2:98 n.d. 77:28
92:8Rh2(4S-IBAZ)4 (11) 50:50 5:95 42:58 18:82 88:12 67:33

82:18 95:5 98:2\99:B1 79:21Rh2(5S-TBPRO)4 (12) 87:13 71:29
\99:B1Cu(box)PF6 (13) b\99:B1 100:0 86:14 86:14 59:41

a Ratios were obtained by GC (SBP-5 column).
b The major product was that from intramolecular oxonium ylide formation followed by [2,3]-sigmatropic rearrangement.

Figure 1. % Ee as a function of ring size for Cu(box)PF6 (2)
and Rh2(4S-MEOX)4 (").

clearly superior to all others. Since they also show high
preference for C�H insertion over cyclopropanation
reactions that form medium-to-large rings, they are the
catalysts of choice. In fact, Rh2(4S-MPPIM)4 has been
shown in earlier studies to be superior to all others
examined by achieving the highest level of enantiocon-
trol.16 Enantiomers of 21 could not be resolved by
chromatographic methods.

The data now available portray unique advantages for
chiral dirhodium(II) carboxamidates and for
Cu(box)PF6 that are complementary. Efforts to exam-
ine the relative advantages of some of the newer
catalysts17–19 should now be undertaken.
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